Be Precise … in all you do

So, I now have 5 different tins of chemicals that I use for composites, and some aluminium racking on which they sit. Needless to say, it’s a minor faff getting to the tin at the back when there’s plenty of other stuff on the shelf. To fix this, I bought some drawer runners, some 150mm wide MDF and set about making a custom shelf (I 3d printed the mounting brackets and the tin holders). I had printed some tin holders so the tins won’t wobble over – everyone deserves a chance to be a Weeble.

However, I was bonding them in and I nudged one and I didn’t notice. It’s slightly wonky.

I don’t know about you, but I can’t leave it like that. There’s a new part coming off the printer now (5 hours print) so I can replace the wonky one and square it off.

 

 

 

The questionable moral about this sorry tale? I’ve seen a few race-cars up on the ramp at my friend’s garage, and they look great from above. It’s when you get underneath them do you see if someone really cares. Are things routed neatly, is that a nice weld, or a bird-shit ‘good enough’ weld because no-one will see it. (before you ask, bird-shit welding is never good enough. Some people think it is). Have people taken the difficult but ultimately better route, or just clagged it in?

It’s even worse for kit cars – it needs to be neat – I’d never be a passenger in a car that looked lashed up.

And for the detail obsessed among us, they are soft-close drawer runners. Of course they are. Sheesh, what kind of animal do you take me for?

Infusion Stations

So, after scrapping my first CF tub, I decided I needed to improve a lot of things (thanks Vic) before I should commit lots of materials for the next tub. First of all was to improve my vacuum management.

What I wanted to achieve was:

  • Make it much easier to route vacuum where i needed it
  • Be 100% sure that I have no leaks in certain parts of the vacuum chain
  • In my case, I want to be sure that everything from the new vacuum manifold inwards was leak proof
  • Prove everything from the manifold to and including the catch-pot was leak-proof
  • have a solid, reliable catch-pot

 

Firstly, I created a vacuum manifold, printed a bracket and mounted it on to the side of the compressor. The manifold is actually a gas manifold for a caravan gas supply, and I got it new from Ebay for about £30. The manifold itself actually has a non-return valve in each tap assembly, so I had to fettle that. Not a hard job and subject to a different post.

 

 

Next I mounted the catch-pot onto the vacuum tank (or an old compressor I repurposed). This was relatively painless – again I printed a bracket. This time it’s the orange thing under the catch-pot. All it is is something that is curved to the tank on one side, and level on the other. Thus I could mount the catch-pot on the level. I bonded it onto the tank with metal-epoxy, and used double-sided tape to stick the pot to the mount. The tape is monster tape – it’s fearsome stuff won’t let go easily. It will let go if I need it to.

Finally the whole thing was piped up (below) and tested.

Once I had this working, I decided I wanted another bench manifold, and made one out of push-to-fit pneumatic connectors. This means I can put my degassing chamber on the bench and not have to connect it directly to the vacuum pump. There’s little time between degassing and infusing, especially if you have 3kg of resin in a bucket – it’ll start exotherming quite quickly. With my manifold setup, i can hold the part under vacuum whist at the same time degassing the resin. Then I just need to connect the feed line to it and I can go.

 

What you can see here is one branch of the manifold. There’s a t-piece at the bottom, and a valve in the middle. The top is the output. Again, I printed some brackets to give me just the mounting I wanted, and the white bracket in the middle is actually a 15mm hinge-clip for attaching standard poly-pipe when plumbing. They’re £6 for 100, so I bought 100. I have many spares. The top blue bit is the outlet at this part of the manifold. It lets me plug an 8mm pipe straight in to the quick-release connector.

 
This is the final manifold – the picture isn’t great, but you can see three outlets. It’s set on an old tool-board I used which I didn’t need anymore – far better reuse that (considering it was already bonded to the wall).

Great service from Tracy Tools

So, a while back, I bought a 1/2″ reamer from Tracy Tools Ltd and I thought I’d ordered the wrong one – straight flutes when I thought I needed tapered. The nice phone support chap talked me though it and assured me my reamer would just chew through.

So, full with confidence, I gate it a try. It did a fantastic job and really dug through the holes in the stepped brackets.

 

Clean down time

it’s time for one of the most boring jobs I have to do. Before I finish off getting the plasticine into the part and spray the release agent I’m going to have to clean the garage down to get the dust levels down.

First I’ll be vacuuming everything and then I’ll be pressure washing it down. This is so dull.

On the plus side my son and I did manage to get the engine gearbox and differential out of the chassis today so it’s just pure chassis and parts now. 

 Edit