So, here are the two sample pieces, as mentioned previously in this post. They’re rough and ready, and not pretty to look at. What’s more, I had an infusion issue so there’s more air in the part than I would want.
However, it’s worth looking at the following dry weight calculations:
Part | Final Weight | Dry Weight | Diff | % Resin |
with Veil [1] | 136 | 103 | 33 | 24.26% |
No Veil | 144 | 110 | 34 | 23.61% |
So, the lesson is that the part absorbed about 24% resin, excluding that retained in the infusion mesh, pipework, etc. It is also very important to note that the 10mm core is cross-drilled every square inch with a 2mm hole and has resin channels scored in the underside to allow rising to flow over the other side of the core. this will have absorbed some resin as well, which won’t be there if a core isn’t used.
Next post, I’ll get these under the microscope and you can see what the bubbles look like. If I can find a text-book infusion part then I’ll compare against that to see what gets left behind when the job’s done properly.
[1]The veil part is an experiment I ran with a piece of polyester veil under the facing layer to see if it acted as an air-removal medium to make the facing layer more cosmetically pleasing. Due to me cocking up and getting air in the infusion, I have no idea if it would have worked. It certainly didn’t work for me as a backing layer (as advertised). it absorbed far too much resin, was a pig to wet out and didn’t easily go into corners, leaving bubbles behind the gel-coat which have to be repaired.